
Systematic Errors in Climate Models Consequent on
the Design of the Fortran Language:

Detection and Correction

Acknowledgments
This work is supported by:
 The United States Air Force
 UCAR and NCAR
 Edge Hill University
 SimCon Ltd.
The authors wish to thank:

Prof. W. J Gutowski Jr. Iowa State University
Prof. Bruce Hewitson, University of Cape Town
Dr. David Gill at UCAR

for their help and support.

Many classes of systematic error in Fortran programs have been
largely eliminated by changes in language design both in and
since the Fortran 90 standard. For example, the replacement of
common blocks by modules removes the risk of mis-alignment,
and free-format layout prevents many simple textual errors.
However, some issues remain, or have actually been introduced
by these changes. For example:

● Precision: The computation of high precision results in
expressions is often degraded without warning by the
accidental inclusion of low precision variables. Also the
precision of a Fortran literal number may not be that implied by
its textual representation.

● INTENT: Errors in the declaration of the INTENT of a sub-
program argument (Whether input, output or both) may cause
compilers to generate incorrect code.

● OPTIONAL arguments: Optional arguments may accidentally
be passed down into lower level routines without a check that
they are present in the argument list.

● Accidental whole array assignments: If the subscript of an
array is accidentally omitted and an assignment is made from a
scalar variable, the entire array is assigned.

Climate models are particularly vulnerable to some of these issues
because of the extensive use of modern Fortran constructs. Tests
are described by which these errors may be detected, and in
some cases it may be shown that classes of error do not occur.
Some classes of error may be corrected automatically.

The analysis was applied to WRF, and examples from this model
are described.

WRF

INTENT

Abstract

WRF is an open source community code maintained at The
National Center for Atmospheric Research at Boulder, Colorado.
It is used both for weather prediction and for atmospheric
research. WRF is a mesoscale model, scalable from a grid of a
few metres to thousands of kilometres. The code may be built for
a single processor, or for massively parallel systems. There are
over 20,000 users worldwide.

The version of WRF analysed in this study is 3.4.1.

WRF is a large program. It is distributed as CPP pre-processor
code which is pre-processed to compilable Fortran before
analysis. The metrics for the compilable code are:
Files

Primary files 386
Include files 3

Code and comments
Declaration lines 136,759
Executable lines 332,745
Total code lines 469,504
Comment lines 24,281

Total lines 493,785
Program Units

Programs 1
Modules 320
Subroutines 4,304
Functions 35
Module subroutines 1,933
Module functions 299
Internal subroutines 31
Internal functions 9
Generic interfaces 57
Specific interfaces 113
References to C sub-programs 182

The tools used in the study are components of WinFPT
(http://www.simconglobal.com). This is an analysis and re-
engineering tool for Fortran, maintained by two of the authors.

Precision

John Collins1,2,3,* Mark Anderson1 Brian Farrimond1,2,3 Darryl Bayliss1 Darryl Owens1

 1. Edge Hill University UK, 2. University of Cape Town, 3. SimCon Ltd. UK
 john.collins@simconglobal.com

module module_gfs_physcons
 use module_gfs_machine,only:kind_phys
 real(kind=kind_phys),parameter:: con_pi =3.1415926535897931
 real(kind=kind_phys),parameter:: con_sqrt2 =1.414214e+0
 real(kind=kind_phys),parameter:: con_sqrt3 =1.732051e+0
 real(kind=kind_phys),parameter:: con_rerth =6.3712e+6
 real(kind=kind_phys),parameter:: con_g =9.80665e+0
 real(kind=kind_phys),parameter:: con_omega =7.2921e-5
 real(kind=kind_phys),parameter:: con_rd =2.8705e+2
 real(kind=kind_phys),parameter:: con_rv =4.6150e+2
 real(kind=kind_phys),parameter:: con_cp =1.0046e+3
 real(kind=kind_phys),parameter:: con_cv =7.1760e+2

Tagged single precision real literals 14,520 10.5%
Tagged double precision real literals 2,415 1.7%
Total tagged 16,935 12.2%

Untagged single precision real literals 121,081 87.3%
Untagged double precision real literals 726 0.5%
Total untagged 121,807 87.8%

Total real literals 138,742

WRF also contains 3,672 occurrences of expressions with mixed
real kinds. For example (module_bl_gfs line 151):

 HEAT(i)=HFX(i,j)/CPM*RRHOX
 EVAP(i)=QFX(i,j)*RRHOX

All of the terms in these statements are 8-byte real numbers
except HFX and QFX, which are single precision numbers. In
consequence, HEAT and EVAP are accurate only to single
precision even though they occupy 8 bytes. The loss of
precision occurs without warning.

The software engineering tools used in this study can report
anomalies in precision and can correct them, by modifying
declarations and by changing the text of literal numbers. These
changes cause appreciable changes in the program output.

It is suggested that these issues could in part be addressed by a
new Fortran statement, similar to an IMPLICIT statement, which
would specify the default kind of an untagged real literal
constant.

Fortran 90 allows the intent of a sub-program argument to be
specified as:

INTENT(IN) The sub-program may read the value of the
argument but does not assign it.

INTENT(OUT) The sub-program may assign a value to the
argument and does not read it before it is assigned.

INTENT(IN OUT) The sub-program may read the value of the
argument and may assign it. This is the default case

The INTENT declaration is an assertion which the compiler may
check against the sub-program code. If an argument declared
INTENT(IN) is assigned an error may be reported. Simple test
programs were written to examine this behaviour with a number of
widely used compilers. Tests were made with Compaq Visual
Fortran, Salford Software FTN95, gfortran, g77 and Intel ifort.
Three cases were examined:

Simple violation: an INTENT(IN) argument assigned directly
across an = sign. This was reported as an error by all compilers
tested.

Module violation: an INTENT(IN) argument was passed into a
module subroutine in the same Fortran module, and assigned
directly across an = sign in that module. No compilers detected
this case.

Call violation: an INTENT(IN) argument was passed into a
separately compiled subroutine and assigned in that routine
across an = sign. This was detected as an error by only one
compiler, Salford FTN95.

Software engineering tools were used to check the INTENT
declarations in WRF. Three classes of INTENT violation are
detected:

INTENT(IN) violation: INTENT(IN) arguments which are written
to (always because they are passed down into other routines
where they are assigned).

INTENT(OUT) violation: INTENT(OUT) arguments which are
always read before they are assigned.

Possible INTENT(OUT) violation: INTENT(OUT) arguments
which may be read before they are assigned but where the
program flow is data-dependent and uncertain.

In WRF, the INTENT declarations are:

Total number of arguments 53,908
Declared INTENT(IN) 28,460
Declared INTENT(OUT) 6,155
Declared INTENT(IN OUT) 5,384
Variables with no declared INTENT 13,884
Sub-program formal arguments 25
INTENT(IN) violations 137 0.5%
INTENT(OUT) violations 102 1.7%
Possible INTENT(OUT) violations 1,292 21.0%

The violations are errors. If INTENT declarations are treated only
as assertions which the compiler may check, the situation is not
serious. However, this is not made clear by the Fortran standard.
If the compiler may make use of the INTENT declarations in code
optimisation, the errors may be significant. For example, a
compiler might rely on the fact that an INTENT(IN) argument is not
changed by a sub-program call, or might not import the value of an
INTENT(OUT) argument when a routine is called.

The use of INTENT by two compilers was investigated. All non-
mandatory INTENT declarations were stripped from WRF
automatically (A small number remained, in the interfaces of
overloaded operators and in ELEMENTAL routines). The code
was built under gfortran and ifort and the results were compared
with those from un-modified code. There were no changes. These
compilers do not use INTENT declarations in code generation.

The INTENT declarations may also be corrected, and missing
declarations supplied automatically. This is an issue in the future
maintenance of WRF. It is clear that manual maintenance of
INTENT declarations is difficult. Violations may be introduced by
modification of routines in high branches of the call-tree remote
from the declarations themselves. If INTENT specifications are
left in place or are supplied, then either a maintenance trap is
created or a permanent commitment is made to the use of
software engineering tools. If they are stripped, there is a loss of
documentation.

The Software Engineering Tools

A real constant compiled by a Fortran 90 compiler will always be
a single precision value unless a different precision is specified,
either by a kind tag or by the exponent character. For example,
3.1415926535897931 is a single precision number, usually
occupying 4 bytes. 3.1415926535897931_8 and
3.1415926535897931D+00 are double precision numbers. Note
that this behaviour differs from that of the legacy extended
Fortran 77 compilers such as DEC VMS Fortran, where the
precision of a real constant was inferred from context. A common
error is to use a literal constant of the wrong precision.

WRF contains 235 occurrences of double precision Fortran
parameters which are assigned from single precision values. For
example, all of the double precision constants for the physics
codes are all set to single precision values. Part of the code is
shown in the following column.

Most of these constants are specified with too few digits for the
loss of precision to be significant. However, it is perhaps a
weakness in the language that the precision of a value such as
that of con_pi is degraded without warning.

The Fortran standard recommends the use of kind tags to specify
the precision of a real numeric constant. The WRF code contains:

OPTIONAL Arguments
Arguments to Fortran 90 sub-programs may be declared to be
optional, and may be omitted from the list of actual arguments
when a routine is called. A problem arises if an optional argument
which has been omitted is accessed in the body of the sub-
program. This is an error, but is not always reliably trapped. The
intrinsic function PRESENT is used to determine whether an
optional argument has been specified, and access to optional
arguments should be guarded by IF (PRESENT(... constructs.

The WRF code was analysed for the use of optional arguments
which are not guarded. The analysis shows:

Number of optional arguments 2118
Optional arguments with unguarded references 1298
Total number of unguarded references 2352

This is a difficult analysis, because logical variables may be
constructed from the PRESENT() tests, and may be used in a
non-trivial way to guard access to the arguments. The number of
unguarded optional arguments is therefore a slight over-estimate.
However, a sample was checked by hand and most were found to
be genuine errors.

It is suggested that compilers should be required to check that
optional arguments are correctly guarded.

Accidental Whole Array References (And good news)
One of the changes introduced in the Fortran 90 standard is the
facility to assign every element of an array from a scalar value. If,
for example, the array A is declared with dimensions A(1:10,1:4)
the statement A = 0.0 sets all elements of A to zero. A side-effect
of this change is that it is possible to omit the indices of an array
accidentally and assign the entire array instead of one element.
These errors are not uncommon in aerospace codes.

We are able to demonstrate that this never occurs in WRF.

http://www.simconglobal.com/
mailto:john.collins@simconglobal.com

	Slide 1

