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Abstract 

Scientific equations embedded in computer programs 
must obey the rules for dimensional consistency. Many 
efforts have been made to enforce these rules within 
computer programs. Some methods require the user to 
modify the program by adding dimensional information 
either as extensions to the programming language or else 
by using existing language facilities. The large amount of 
effort required to modify large scientific and engineering 
programs in this way is usually uneconomic and can be 
prone to error if done manually. Consequently, methods 
that do not require modifications to the program have 
been developed. However, these methods are limited in 
what they can discover and find it hard to tell the user 
where, precisely, in his program the error has been made. 

This paper describes a novel approach which employs 
the concept of  symbol lives to analyse the dimensional 
implications of the users source code. The method, 
implemented for Fortran programs in the software 
engineering toolkit, WinFPT, is fast, systematic and 
identifies the locations of errors in the user's source code.  
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1. Background 

 
An important class of errors, particularly within 

scientific and engineering programs, is the incorrect 
implementation of formulae. Many of these errors are 
often manually detectable by applying dimensional 
analysis  which applies the principle that the physical 
dimensions of components of  a formula must be 
consistent otherwise the formula must be incorrect. 

In physics and engineering, the dimensions of a 
physical quantity describe how the quantity is related to 
fundamental or base dimensions. In mechanics these base 
dimensions are mass, length and time. The International 
System of Units (SI) [8] adds to these three, temperature, 
electric current, luminous intensity and amount of 
substance. All physical quantities have dimensions that are 
products of these base dimensions i.e. the result of 
multiplying together powers of these base dimensions. 
Consider, for example in mechanics that the base 
dimensions mass, length and time are represented by the 
symbols M, L and T. Then the physical quantity speed has 
the dimensions L.T-1 . Area has the dimensions L2 and 
force has the dimensions M.L.T-2 . The powers may be 

fractional. In general, if the base dimensions are A1, A2, 
... An then any physical quantity will have dimensions: 

A1 .A2 . ... Ana1 a2 an

where a1, a2, a3 ... an are real numbers. 
The terms "units" and "dimensions" are sometimes 

used interchangeably but in fact they mean two different 
things. A dimension is a particular property while a unit is 
a measure of that property in terms of some arbitrary scale. 
Thus length is a dimension while a metre is a unit of 
length defined as the length of the path travelled by light 
in vacuum during a time interval of 1/299,792,458 of a 
second. [8]. In Fortran, the term DIMENSION refers 
specifically to a mathematical property of arrays. In order 
to avoid confusion over the terminology, we decided to 
use the word "units" instead of "dimensions" when 
describing the mechanism employed in WinFPT in this 
paper. Since the method does not rely on physical units 
and deals entirely with dimensions (it does not distinguish, 
for example, between metres and centimetres) we felt able 
to do this without causing confusion. Consequently, we 
use the terminology that Units(A) represents the 
dimensions of quantity A. We describe, at the end of  
Section 8, circumstances in which the method can identify 
erroneous mixing of units such as metres and feet.  

WinFPT [14] is a suite of tools for writing, 
maintaining and migrating Fortran programs. It has several 
hundred commands for checking, reporting on and 
modifying Fortran source code. It is currently being 
extended to include dimension checking by inference. This 
paper reports on the progress of this work. 

The methods described are applicable to any high 
level languages that deal with scientific or engineering 
quantities. Fortran was chosen in the present study because 
the authors had access to a powerful existing analysis tool 
in WinFPT for Fortran. Implementation of the methods in 
other languages would require equivalent analysis tools. 
 
2. Dimensional Constraints 

 
We now identify the dimensional constraints, labeled 

C1 to C7, that WinFPT aims to apply in its analysis. (m 
and n are real numbers.) 

 
C1. X  relational operator Y ⇒ Units(X) = Units(Y) 

e.g. X > Y⇒ Units(X) = Units(Y) 
 



C2. X+ Y or X - Y ⇒ Units(X) = Units(Y) 
A converse of this is: 

C2c1.   Xn + Xm (where m ≠ n) ⇒ Units(X) = 1 
where 1 means dimensionless. 
 
C3. Units(Xm * Yn) = Units(Xm) * Units(Yn) 
 
C4. Transcendental function of X  ⇒ Units(X) = 1 
 e.g. sin(X)  ⇒ Units(X) = 1 
 
C5. The return values of transcendental functions are 

dimensionless. 
e.g. X = sin(Y) ⇒ Units(Y) = 1  
 
C6.   Certain Fortran instrinsic functions are 

polymorphic 
e.g. 
X = MAX(Y, Z) ⇒ Units(X) = Units(Y) = Units(Z) 
 
C7.   Function definitions can determine the 

dimensional relationships between actual arguments 
e.g. given the following subroutine definition: 

SUBROUTINE S(A, B) 
   A = B*B 
END 

then 
CALL S(X,Y) 

implies Units(X) = Units(Y2) 
 
At first glance, it might appear that each side of an 

assignment statement must be dimensionally consistent. 
This assumes that the left hand side already has a 
dimension before the assignment takes place. If the left 
hand side has been annotated to have a dimension in its 
declaration then this will indeed be the case. However, if 
no dimensions have been assigned to variables when 
declared then all an assignment does is to establish the 
dimensions of the left hand side. It is not a constraint. Our 
concept of lives, introduced below, is based on this notion. 

Note that none of these constraints make reference to 
base dimensions. This paper will show how the constraints 
can be used to check programs without reference to base 
dimensions and so demonstrate how a powerful set of 
checks can be carried out by a suitable tool without the 
need for any modification of the source code under 
examination.  

The rest of this paper is organised as follows: Section 
3 describes related work, Section 4 shows how 
dimensional analysis reveals possible errors, Section 5 
introduces the concept of symbol lives, Section 6 shows 
how a symbol's dimensions are related to its lives, Section 
7 illustrates the WinFPT dimensions analysis mechanism 
by means of an example. Section 8 describes WinFPT 
output and discusses the opportunities and issues 
associated with the work done developing WinFPT, 
Section 9 contains closing remarks. 

 

3. Related work 
 
Many efforts have been made to detect dimensional 

inconsistency in order to trap errors in computer programs. 
Attempts normally employ modifications to the 
programmers source code. Some of these modifications 
have required language extensions. Examples include: 
House [5], Dreiheller et al [2] and Van Delft [12]. 

Other proposed program modifications do not rely on 
changes to a programming language but instead, use 
existing language features. Hilfinger [4] defines an Ada 
package to handle units. Cmelik and Gehani [1] introduce 
C++ unit aware classes to replace the double and int data 
types. Overloading of operators is used to detect attempts 
to violate dimensional consistency. Umrigar [11] uses 
templates in C++, defining operations on dimensions 
which enable inconsistencies to be detected at compile 
time. Petty [9] proposes using a structure to replace the 
REAL data type in Fortran. The structure stores dimension 
information alongside the magnitude of the variable value. 
Operator overloading detects dimensional inconsistencies 
in the use of these variables at run time. This approach 
follows that established by Cmelik and Gehani. 

In the 1990s, new approaches were inspired by the 
type inference mechanisms provided in languages such as 
ML. Type inference enables a compiler to infer types if the 
programmer leaves them out. Several authors, including 
Wand and O'Keefe[13] and Kennedy [7], have proposed 
using this feature to embed unit types in the language type 
systems. The inference mechanism looks for consistency 
of use of unit types derived from a user-supplied set of 
base units. Linear algebra is used to solve the constraint 
equations generated from dimensional consistency 
analysis. The ML language has been extended to enable 
unit type annotations for symbols. Similar work has been 
done for the gPROMS simulation language by Sandberg et 
al [10] who use annotations in the form of tagged block 
comments to avoid the need for language extensions. 

In scientific and engineering computing where 
dimension checking has its most obvious application, it is 
quite normal to find large bodies of complex legacy code 
in use. Applying modifications as described in the 
previous paragraphs is often not economically feasible. 
The Osprey system developed by Jiang and Su [6] uses 
type inference to carry out dimensional analysis of C 
programs without the need for comprehensive code 
modifications. Osprey uses a pipeline of tools for 
constraint solving. It can use annotation of unit types in 
the C code but it is not required. However, Osprey may 
not discover any unit errors when there are not sufficient 
annotations in the program.  

Guo and McCamant [3] have developed a system for 
C programs that infers the unit types of variables from 
their use in the programs. It infers base units and identifies 
a combination of these for each variable and constant in 
the program. Their work does not require the user to make 
any unit type annotations at all to the C code. The 
resulting analysis can be used by programmers to identify 
bugs indicated by the unit types not matching up with their 

 



intuition. Their system also provides a framework for 
systematically associating base units with real world units 
and automating the process of identifying combinations of 
these base units for all the program variables. There are 
four stages in their system: 

• constraint generation from an analysis of the 
program source code 

• constraint simplification by applying meaning-
preserving transformations and heuristics 

• constraint solving using linear algebra 
techniques outputting a minimal set of inferred 
base units. Each variable is expressed in terms of 
these inferred base units. 

• user interface for guided annotations to allow 
the user to provide user-defined units for 
variables under the guidance of the solved 
constraints. 

 
Their method is limited by a static analysis that is 

flow-insensitive. It only associates a variable with one unit 
type whereas it is quite possible that the same variable 
may be used for several different unit types over the 
course of a program. In one example program, a single 
global variable is used repeatedly when reading floating 
point values of a number of different units causing them 
all to be considered dimensionless. We explain below how 
this problem can be overcome using our concept of 
symbol lives. The analysis proposed by Guo and 
McCamant is also context-insensitive. A function being 
called at several different locations may on each occasion 
be passed arguments whose unit types differ. The method 
is only able to assign one set of units to the return value of 
a function. The method avoids resulting inconsistencies by 
treating all return values as dimensionless. Different unit 
types fields within a data structure are not handled. All 
fields are assumed to have the same unit type. The 
elements of an array are treated as all having the same unit 
type. 

An important issue arising in the various methods 
applied is the meaningfulness of the generated warning 
and error messages. For example, in Petty's work, an error 
is reported but no indication of where in the code that it 
took place. This does not help the efficiency of debugging. 
In work that solves constraint equations, the source of the 
reported error can be very difficult to identify. 

This paper describes a technique based on 
dimensional inference that overcomes problems present in 
the related work described above. In the next section we 
shall indicate how dimensional inference can be used 

 
4. Applying dimensional inference 

 
We now consider the implications of applying 

dimensional constraints to Fortran programs. Only real 
variables, real constants and functions returning real 
values are checked for consistency. 

In the code fragment: 
 R = B + C 

where R, B and C are real variables which represent some 
physical quantities in the program, the dimensions of R 
must be the same as the dimensions of B and the 
dimensions of C. Similarly, in the fragment: 

 A = B * C 
the dimensions of A must be the dimensions of B 
multiplied by the dimensions of C. 

Inferences like these are propagated through a 
program.  The analysis yields a set of dimensions which 
describe the physical quantities used, and the relationships 
between the dimensions are checked for consistency.  If 
the fragments above are followed by a fragment: 

 E = A + C 
then C is measured in the dimensions of C but A is 
measured in the square of the dimensions of C.  An error 
has been detected. 

 
5. Symbol lives 

 
It is not always possible to attach a single inference of 

dimensions to each variable.  Consider the code fragment: 
! Sort the tables by weight 
change_f = .TRUE. 
DO WHILE (change_f) 
  DO i = 2, n 
    IF (weight(i) < weight(i-1)) THEN 
      temp = weight( i )           ! (1)
      weight( i ) = weight( i-1 ) 
      weight( i-1 ) = temp 
      temp = height( i )           ! (2)
      height( i ) = height( i-1 ) 
      height( i-1 ) = temp 
      change_f = .TRUE. 
    ENDIF 
  ENDDO 
ENDDO 

In this fragment, temp must first have the dimensions 
of weight and then the dimensions of height.  The 
implication is that weight and height should have the same 
dimensions. This problem is overcome by defining “lives” 
of each variable. 

A variable symbol life starts with an assignment (or, 
in Fortran, with initialisation in a DATA specification) and 
ends with another assignment or when the variable is no 
longer in use.  In the example above, temp has two 
independent lives, started at (1) and (2) respectively.  The 
different lives can, and in this case do, have different 
dimensions. 

Note that every assignment does not necessarily start 
a new life.  In the fragment: 
IF (loaded) THEN 
   weight = vehicle_wt + payload ! (3)
ELSE 
   weight = vehicle_wt           ! (4)
ENDIF 
acc = thrust / weight            ! (5)
either of the values of weight assigned at (3) and (4) may 
be used in the expression at (5).  In cases like this, the 

 



lives are combined and the dimensions of weight in the 
two assignments must be the same. 

This leads to an extra dimensional constraint in 
addition to those listed in Section 2: 

 
C8.   If more than one assignment can start a life (for 
example if they are embedded in if statements) then 
their dimensions must be the same. 

 
i.e.  X = A; X = B ⇒ Units(A) = Units(B) 

 
In general: 
• Two lives are considered to be equivalent if any code 

path exists where either could be used as an input to 
the same expression. 

• The meaning and results of a program would not 
change if every separate life of each variable were 
declared independently and given a different name. 
 
In the analysis of dimensions, the separate lives of the 

variables are identified and dimensions are associated with 
the lives and not with the variables. 

We give two definitions: 
usage - the employment of a symbol on the right hand 

side of an assignment or else as an input argument to a 
sub-program call or as part of a condition (e.g. in an if 
statement). 

assignment - the employment of a symbol on the left 
hand side of an assignment or as an output argument to a 
sub-program call. 

Each symbol is deemed to have one or more lives. A 
life is started when the symbol is defined or assigned a 
value. Subsequent stages of a life consist of uses made of 
the symbol. Each stage is called a moment. A life is 
terminated by the end of the program source code or by an 
assignment being made to the symbol. For example, in the 
following code fragments, the symbol X has three lives. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first life of X begins with the declaration, the 

second life begins with the assignment X = 1 and the 
third life begins with the assignment X = 8. The first life 
has one moment, the second has three moments and so 
does the third. 

During semantic analysis within WinFPT, lives are 
determined for each symbol in turn for each usage 
statement in turn by following this algorithm: 

 
For each symbol in the symbol table 

For each usage statement using the symbol 
Trace back to all reachable last assignments 
of the symbol previous to the usage 

 
For the example above, for the X usage statement Y = 

2 + X, the last previous assignment is X = 1. Thus the 
life of X which includes Y = 2 + X consists of the three 
statements: 
X = 1 
Z = 3*X 
Y = 2+X 

 
5.1 Cases 

 
We now describe some particular cases: 

1. Branches: If the path of control determines that two or 
more assignment statements could have started a life that 
includes a given usage statement then those assignment 
statements must be considered to have started the same 
life. 
2. Structured data types: Combinations of symbols such as 
A.X which identifies a field inside a structure or record are 
treated like symbols. 
3. Constants: Real constants are handled in the same way 
as symbol lives and are also associated with dimensions. 
4. Arrays: Arrays present two problems in the analysis of 
units and dimensions. Firstly, it is sometimes difficult to 
identify the separate lives of an array because some, but 
not all elements of the array may be assigned in a code 
fragment. Secondly, the units and dimensions of different 
array elements may be different.  A single array could 
store, for example, the gender, age, weight and height of a 
set of medical patients. 

For these reasons, the initial implementation of 
dimensional analysis has been restricted to scalar objects.  
Algorithms have been designed to handle arrays but were 
not implemented in the present work. 

 INTEGER*4  X 
 
X = 1 
 
Z = 3*X 
 
Y = 2+X 
 
X = 8 
 
P = X - 6 
 
Q = 30 / X 

First life of X 

Second life of X 
In the next section we examine the connection 

between a variable's dimensions and its lives. 
 
6. Symbol lives and dimensions 
 

Third life of X During a life, the dimensions of a variable are fixed. 
This rule applies even when a re-assignment may happen 
during the course of the life dependent on a condition. e.g. 
X = A 
IF (P .LT. 5) 
   X = B 
ENDIF 
PRINT *, X 

This is a single life for X which starts with X = A. 
The re-assignment which takes place only if the condition 
is satisfied will be used in exactly the same way after the 
ENDIF and so we must presume that the original 

 



assignment and the re-assignment share the same 
dimensions.  Altering the second assignment of X as given 
below results in a potential inconsistency since the final 
line prints out  either something with the dimension A or 
the dimension A*A. 
X = A 
IF (P .LT. 5) 
   X = A*A 
ENDIF 
PRINT *, X 

If a variable has a more than one life then it indicates 
that the programmer may be using the same variable for 
multiple reasons. We cannot assume that the programmer 
intends that in each life the variable has the same 
dimensions. Consequently, our dimension checking will 
only assume a variable has a particular dimension for the 
course of a life and that its other lives can have different 
dimensions. This has an important consequence for 
checking assignment statements. Since an assignment 
statement starts a new life for the variable on the left hand 
side, we cannot declare that if the dimensions of the left 
hand side variable left over from the previous life are 
different from those on the right hand side then we have an 
inconsistency. What we can in fact say is that the variable 
on the left hand side is beginning a new life here with 
dimensions given by those on the right hand side. For 
example: 
X = A*A  ! Start of X life
B = 2*X 
X = A*A*A  ! Start of next X life
C = 3*X 

In this code, X has two lives. In the first life, it has 
dimensions given by A2 while in the second life it has 
dimensions given by A3. Because of our understanding of 
lives, we do not regard this situation as being inconsistent. 

 
7. Dimension checking by inference in 

WinFPT 
 
During static analysis, WinFPT constructs an internal 

representation of the user's source code. The 
representation includes sequences of statements and their 
component tokens such as symbol tokens and operator 
tokens. The symbol lives are identified by using the 
algorithm given in Section 5 to process the internal 
representation, resulting in symbol tokens being replaced 
by life tokens. In a later pass through the internal 
representation, units are recorded for each life in a data 
structure illustrated below in Figure 1.  

 

 
Figure 1: Units data structure in WinFPT 

 
As stated earlier, the name "units" is used in 

preference to "dimension" to avoid confusion with the 
properties of array variables. Figure 1 shows that, for each 
unit found, WinFPT maintains: 
• a list of usage records that identify every location in 

the program where a symbol life has this unit 
• a list of related unit records that identify every 

location in the program where the unit has been found 
to be identical to a combination of one or more 
powers of other units through the application of the 
constraints given in Section 2. 
Thus we are able to record every kind of unit used, 

where it was used and all the ways that it relates to other 
units and the places in the user's code where this was 
discovered. WinFPT implements the first six dimensional 
constraints through a modification of its expression 
analysis routines. It implements the seventh by carrying 
out the units pass through the internal representation as a 
bottom up walk through the user's program's call structure. 
WinFPT knows at every call site the relationships between 
the arguments and the return value because it has already 
analysed the lower levels.  

Dimensional checking consists of confirming the 
consistency between the sets of related units and reporting 
where inconsistency is found. We illustrate the process 
with an example but first we introduce a notation to 
describe the WinFPT units data structure. 

We define  
Units(X, n)^m  

as units of life n of symbol X raised to the power m. 
In the case of a symbol with only one life, this reduces to 
Units(X)^m  

The usage records in the data structure enable us to 
find the locations in the user's code related to a particular 
unit. We represent this as: 
Units(X, n)^m->usages->Life nn of Y, location in code 

We extend our notation to describe the related units of 
a unit as follows. Suppose we have found that units of X 
are the same as units of Ya.Zb and also Pc . 

 



This will be expressed as: 
Units(X) ->related-units-> Units(Y)^a . Units(Z)^b 
 ->related-units-> Units(P)^c 

We shall now describe the dimensional checking of 
the following Fortran code fragment: 

 
READ*, L, W, H ! Length, Width, 

! Height of box 
A = 2*(L*W + L*H + W*H) ! Surface area  
V = L*W*H  ! Volume 
D = SQRT(L^2 + W^2 + H^2)! Diagonal 
E = L + V  ! An error situation 

 
READ*, L, W, H 

This statement starts the lives of L, W and H. Unit 
records are created for them which we represent as 
Units(L) 
Units(W) 
Units(H) 

assuming, for the sake of simplicity of the notation, 
that the symbols in the fragment only have one life. 

 
A = 2*(L*W + L*H + W*H) 

Processing the right hand side of this statement results 
in: 
Units(I1)-> related-units-> Units(L)^2 
Units(I2)-> equivalent to-> Units(I1) 
Units(I3)-> equivalent to-> Units(I1) 
Units(L) -> related units -> Units(I1)^(1/2) 
Units(W)-> equivalent to -> Units(H) 
Units(H) -> equivalent to ->Units(L) 

where I1, I2 and I3 are intermediate symbols 
representing the quantities L*W, L*H, W*H respectively. 
The data structures show the results of WinFPT's analysis 
which has determined that I1 has the units of L2, that I2 
and I3 have the same units as I1, that L has units which 
are the square root of those of I1 and that the units of W 
are the same as those of H and that the units of H are the 
same as those of L. 

The left hand side is A so we know that the units of 
this life of A are those of the right hand side. WinFPT 
records this life of A as being a usage of Units of I1. This 
results in: 
Units(I1)-> related-units -> Units(L)^2 
 ->usage  -> Life 1 of A, location in code 
Units(I2)-> equivalent to  -> Units(I1) 
Units(I3)-> equivalent to  -> Units(I1) 
Units(L)-> related units  -> Units(I1(1/2) 
Units(W)-> equivalent to  -> Units(H) 
Units(H)-> equivalent to  -> Units(L) 

where changes from the previous data structure state 
are shown in bold.  

WinFPT has now identified a real symbol for I1 so 
we replace I1 with that symbol: 
Units(A)-> related-units -> Units(L)^2 
 ->usage -> Life 1 of A, location in code 
Units(I2)-> equivalent to  -> Units(A) 
Units(I3)-> equivalent to  -> Units(A) 
Units(L)-> related units  -> Units(A)^(1/2) 

Units(W)-> equivalent to  -> Units(H) 
Units(H)-> equivalent to  -> Units(L) 

WinFPT has completed the processing of the 
statement. It has recorded that A has the units of the square 
of L, and that L, W, H are equivalent to each other. 

Comparing sets of units for equivalence is at the heart 
of the process. WinFPT compares two sets of units 
denoted f(Units) and g(Units) by solving the equation: 
 

f(Units).g(Units)^(-1) = 1  Equation 1 
 
Three outcomes are possible: 
case 1) all factors cancel so we are left with 1 = 1. 

This tells us that everything is consistent about the two 
sets of units. 

case 2) one factor remains on the left hand side. This 
tells us that either the factor is dimensionless or we have 
an error. If we have presumed that all real variables have 
dimensions then we have found an error and so we report 
the error and how it was caused. 

case 3) two or more factors remain on the left hand 
side. This gives us combinations of relationships that must 
hold between the units for consistency. 

For example, during the analysis of the statement that 
assigns a value to A, WinFPT checks 
Units(L)^1.Units(W)^1 against Units(L)^1.Units(H)^1. 

Applying equation 1 we get: 
Units(L)^1.Units(W)^1.( Units(L)^1.Units(H)^1)^(-1) = 1 

This gives: 
Units(L)^1.Units(W)^1.Units(L)^(-1).Units(H)^(-1) = 1 

Cancelling factors, this reduces to: 
Units(W)^1.Units(H)^(-1) = 1 

This is an example of case 3. We can deduce that 
Units(W) = Units(H) 
 
V = L*W*H.   

After processing this statement, the data structure 
becomes: 

 
Units(A) -> related-units-> Units(L)^2 
 -> related-units-> Units(I4)^1 . Units(L)^(-1) 
 ->usage -> Life 1 of A, location in code 
Units(I2)-> equivalent to -> Units(A) 
Units(I3)-> equivalent to -> Units(A) 
Units(L) -> related units -> Units(A)^(1/2) 
 -> related units-> Units(I4)^1 . Units(A)^(-1) 
Units(W)-> equivalent to -> Units(H) 
Units(H) -> equivalent to -> Units(L) 
Units(I4)-> related units -> Units(A)^1 . Units(L)^1 
where I4 is the intermediate symbol for L*W*H. 

The assignment of V identifies the units of V to be the 
same as the intermediate I4, and I4 is therefore renamed 
in the table to show the association with a variable life: 
Units(A) -> related-units-> Units(L)^2 
 -> related-units-> Units(V)^1 . Units(L)^(-1) 
 ->usage -> Life 1 of A, location in code 
Units(I2)-> equivalent to -> Units(A) 
Units(I3)-> equivalent to -> Units(A) 
Units(L) -> related units -> Units(A)^(1/2) 

 



 -> related units-> Units(V)^1 . Units(A)^(-1) 
Units(W)-> equivalent to -> Units(H) 
Units(H) -> equivalent to -> Units(L) 
Units(V) -> related units -> Units(A)^1 . Units(L)^1 
 ->usage -> Life 1 of V, location in code 

 
D = SQRT(L^2 + W^2 + H^2) 
After processing this statement, the data structure 
becomes: 
Units(A) -> related-units -> Units(L)^2 
 -> related-units -> Units(V)^1 . Units(L)^(-1) 
 ->usage -> Life 1 of A, location in code 
Units(I2)-> equivalent to  -> Units(A) 
Units(I3)-> equivalent to  -> Units(A) 
Units(L) -> related units  -> Units(A)^(1/2) 
 -> related units -> Units(V)^1 . Units(A)^(-1) 
 ->usage -> Life 1 of D, location in code 
Units(W)-> equivalent to  -> Units(H) 
Units(H) -> equivalent to  -> Units(L) 
Units(V) -> related units  -> Units(A)^1 . Units(L)^1 
 ->usage -> Life 1 of V, location in code 
 
E = L + V 

The units of the right-hand-side are evaluated first.  
The + operator implies that the units of L must be the 
same as the units of V.  Applying equation 1 to Units(L) 
and Units(V) we get: 
Units(L).(Units(V))^(-1) = 1 

WinFPT checks through all the sets of units related to 
Units(V) for consistency. Thus Units(V) is replaced by the 
related units Units(A)^1 . Units(L)^1. The equation 
becomes: 
Units(L).( Units(A)^1 . Units(L)^1)^(-1) = 1 

This reduces to: 
Units(A)^ (-1) = 1 

This is an example of case 2. Hence, either A is 
dimensionless or else an error has been detected.  This 
statement is reported as an error. 

 
8. WinFPT Dimensional analysis output 

 
We give below the output produced by WinFPT when 

carrying out dimensional analysis on the code fragment. 
(Note that the alternative Fortran notation of ** for raised 
to the power is employed by WinFPT.) 
----------------------------------- 
Line    28 
File: e:\projects\fpt\fpttest\box.f90 
      E=L+V 
         ^ 
     Inconsistency detected in units  
     and dimensions 
------------------------------------- 
 
************************************* 
 
Units Identified 
================ 
Units(L) 

   ==    Units(V)    ** 1 
      *  Units(A)    ** -1 
 
   ==    Units(A)    ** (1/2) 
   Variables or variable lives 
    D    H    L    W 
 
Units(A) 
   ==    Units(V)    ** 1 
      *  Units(L)    ** -1 
 
   ==    Units(L)    ** 2 
   Variables or variable lives 
    A 
 
Units(V) 
   ==    Units(A)    ** 1 
      *  Units(L)    ** 1 
   Variables or variable lives 
    V 
 
Units(E) 
   Variables or variable lives 
    E 
 
********************************* 
 
Units of Symbols 
================ 
A   Units(A) 
D   Units(L) 
E   Units(E) 
H   Units(L) 
L   Units(L) 
V   Units(V) 
W   Units(L) 
******************************** 

 
WinFPT has identified the error in the assignment E 

= L + V. Through the system of recording unit usage 
locations, WinFPT is able to report the source code line 
and the operator within the line that gives rise to the error. 

In addition to reporting errors, WinFPT lists the non-
equivalent units that appear in the program in the final lists 
of related units. These are the de facto fundamental units 
used by the programmer. Their relationships with each 
other are listed systematically. The user is able to scan 
these lists to confirm that WinFPT is telling the user that 
the units are related in the expected way. Meaningful 
symbol names make a considerable difference to the ease 
with which this can be carried out! 

WinFPT then lists the symbols giving the units of 
each in terms of the de facto fundamental units. 

As mentioned earlier, there are situations in which the 
method can detect erroneous use of units in the sense of 
trying to mix feet and metres. Consider the following code 
fragment: 

 
FTPM = 3.2808 ! feet per metre 
: 

 



R_OUTER = 4.1 ! feet 
R_INNER = 1.2 ! metres 
L = R_OUTER - R_INNER*FTPM 
A = PI*(R_OUTER**2 - R_INNER**2) 

 
The programmer has created a conversion factor 

variable but he has forgotten to apply it in the formula 
calculating A. WinFPT would report an error since the 
assignment to L would result in  
Units(R_OUTER)->equivalent to->  

Units(R_INNER)*Units(FTPM) 
whereas the assignment to A would result in 
Units(R_OUTER)->equivalent to->Units(R_INNER) 
and WinFPT would see this. 

 
9. Remarks 

 
Previous methods aimed at checking dimensional 

consistency of computer programs have been described 
and issues arising from them have been discussed. A novel 
approach based on the concept of symbol lives has been 
introduced. This approach, allied with the internal 
representation of a user's Fortran program, enables 
WinFPT to carry out fast and systematic checking without 
the user having to modify source code.  

It will be noted that WinFPT carries out a great deal 
of checking of the unit records as it works its way through 
the user's code. This is achieved very efficiently and 
comprehensively by maintaining a set of cross reference 
tables that enable unit usages etc to be located rapidly 
within the user's source code. Timing experiments on large 
bodies of source code indicate that WinFPT can analyse 
many thousands of lines of code per second. 

WinFPT has been used to analyse a number of large 
Fortran programs. In one large helicopter simulation it 
reported 90 dimensional errors.  

Work is in progress of extending the facility to arrays 
and sub-programs. 
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