
Dimensional Inference Using Symbol Lives

Brian Farrimond
Liverpool Hope University,
University of Cape Town
farrimb@hope.ac.uk

John Collins
Simcon Ltd

University of Cape Town
jcollins@simcon.uk.com

Abstract

Scientific equations embedded in computer programs
must obey the rules for dimensional consistency. Many
efforts have been made to enforce these rules within
computer programs. Some methods require the user to
modify the program by adding dimensional information
either as extensions to the programming language or else
by using existing language facilities. The large amount of
effort required to modify large scientific and engineering
programs in this way is usually uneconomic and can be
prone to error if done manually. Consequently, methods
that do not require modifications to the program have
been developed. However, these methods are limited in
what they can discover and find it hard to tell the user
where, precisely, in his program the error has been made.

This paper describes a novel approach which employs
the concept of symbol lives to analyse the dimensional
implications of the users source code. The method,
implemented for Fortran programs in the software
engineering toolkit, WinFPT, is fast, systematic and
identifies the locations of errors in the user's source code.

Keywords--- Software Engineering, Dimensional

Analysis, Static Analysis, Fortran

1. Background

An important class of errors, particularly within

scientific and engineering programs, is the incorrect
implementation of formulae. Many of these errors are
often manually detectable by applying dimensional
analysis which applies the principle that the physical
dimensions of components of a formula must be
consistent otherwise the formula must be incorrect.

In physics and engineering, the dimensions of a
physical quantity describe how the quantity is related to
fundamental or base dimensions. In mechanics these base
dimensions are mass, length and time. The International
System of Units (SI) [8] adds to these three, temperature,
electric current, luminous intensity and amount of
substance. All physical quantities have dimensions that are
products of these base dimensions i.e. the result of
multiplying together powers of these base dimensions.
Consider, for example in mechanics that the base
dimensions mass, length and time are represented by the
symbols M, L and T. Then the physical quantity speed has
the dimensions L.T-1 . Area has the dimensions L2 and
force has the dimensions M.L.T-2 . The powers may be

fractional. In general, if the base dimensions are A1, A2,
... An then any physical quantity will have dimensions:

A1 .A2 Ana1 a2 an

where a1, a2, a3 ... an are real numbers.
The terms "units" and "dimensions" are sometimes

used interchangeably but in fact they mean two different
things. A dimension is a particular property while a unit is
a measure of that property in terms of some arbitrary scale.
Thus length is a dimension while a metre is a unit of
length defined as the length of the path travelled by light
in vacuum during a time interval of 1/299,792,458 of a
second. [8]. In Fortran, the term DIMENSION refers
specifically to a mathematical property of arrays. In order
to avoid confusion over the terminology, we decided to
use the word "units" instead of "dimensions" when
describing the mechanism employed in WinFPT in this
paper. Since the method does not rely on physical units
and deals entirely with dimensions (it does not distinguish,
for example, between metres and centimetres) we felt able
to do this without causing confusion. Consequently, we
use the terminology that Units(A) represents the
dimensions of quantity A. We describe, at the end of
Section 8, circumstances in which the method can identify
erroneous mixing of units such as metres and feet.

WinFPT [14] is a suite of tools for writing,
maintaining and migrating Fortran programs. It has several
hundred commands for checking, reporting on and
modifying Fortran source code. It is currently being
extended to include dimension checking by inference. This
paper reports on the progress of this work.

The methods described are applicable to any high
level languages that deal with scientific or engineering
quantities. Fortran was chosen in the present study because
the authors had access to a powerful existing analysis tool
in WinFPT for Fortran. Implementation of the methods in
other languages would require equivalent analysis tools.

2. Dimensional Constraints

We now identify the dimensional constraints, labeled

C1 to C7, that WinFPT aims to apply in its analysis. (m
and n are real numbers.)

C1. X relational operator Y ⇒ Units(X) = Units(Y)

e.g. X > Y⇒ Units(X) = Units(Y)

C2. X+ Y or X - Y ⇒ Units(X) = Units(Y)
A converse of this is:

C2c1. Xn + Xm (where m ≠ n) ⇒ Units(X) = 1
where 1 means dimensionless.

C3. Units(Xm * Yn) = Units(Xm) * Units(Yn)

C4. Transcendental function of X ⇒ Units(X) = 1
 e.g. sin(X) ⇒ Units(X) = 1

C5. The return values of transcendental functions are

dimensionless.
e.g. X = sin(Y) ⇒ Units(Y) = 1

C6. Certain Fortran instrinsic functions are

polymorphic
e.g.
X = MAX(Y, Z) ⇒ Units(X) = Units(Y) = Units(Z)

C7. Function definitions can determine the

dimensional relationships between actual arguments
e.g. given the following subroutine definition:

SUBROUTINE S(A, B)
 A = B*B
END

then
CALL S(X,Y)

implies Units(X) = Units(Y2)

At first glance, it might appear that each side of an

assignment statement must be dimensionally consistent.
This assumes that the left hand side already has a
dimension before the assignment takes place. If the left
hand side has been annotated to have a dimension in its
declaration then this will indeed be the case. However, if
no dimensions have been assigned to variables when
declared then all an assignment does is to establish the
dimensions of the left hand side. It is not a constraint. Our
concept of lives, introduced below, is based on this notion.

Note that none of these constraints make reference to
base dimensions. This paper will show how the constraints
can be used to check programs without reference to base
dimensions and so demonstrate how a powerful set of
checks can be carried out by a suitable tool without the
need for any modification of the source code under
examination.

The rest of this paper is organised as follows: Section
3 describes related work, Section 4 shows how
dimensional analysis reveals possible errors, Section 5
introduces the concept of symbol lives, Section 6 shows
how a symbol's dimensions are related to its lives, Section
7 illustrates the WinFPT dimensions analysis mechanism
by means of an example. Section 8 describes WinFPT
output and discusses the opportunities and issues
associated with the work done developing WinFPT,
Section 9 contains closing remarks.

3. Related work

Many efforts have been made to detect dimensional

inconsistency in order to trap errors in computer programs.
Attempts normally employ modifications to the
programmers source code. Some of these modifications
have required language extensions. Examples include:
House [5], Dreiheller et al [2] and Van Delft [12].

Other proposed program modifications do not rely on
changes to a programming language but instead, use
existing language features. Hilfinger [4] defines an Ada
package to handle units. Cmelik and Gehani [1] introduce
C++ unit aware classes to replace the double and int data
types. Overloading of operators is used to detect attempts
to violate dimensional consistency. Umrigar [11] uses
templates in C++, defining operations on dimensions
which enable inconsistencies to be detected at compile
time. Petty [9] proposes using a structure to replace the
REAL data type in Fortran. The structure stores dimension
information alongside the magnitude of the variable value.
Operator overloading detects dimensional inconsistencies
in the use of these variables at run time. This approach
follows that established by Cmelik and Gehani.

In the 1990s, new approaches were inspired by the
type inference mechanisms provided in languages such as
ML. Type inference enables a compiler to infer types if the
programmer leaves them out. Several authors, including
Wand and O'Keefe[13] and Kennedy [7], have proposed
using this feature to embed unit types in the language type
systems. The inference mechanism looks for consistency
of use of unit types derived from a user-supplied set of
base units. Linear algebra is used to solve the constraint
equations generated from dimensional consistency
analysis. The ML language has been extended to enable
unit type annotations for symbols. Similar work has been
done for the gPROMS simulation language by Sandberg et
al [10] who use annotations in the form of tagged block
comments to avoid the need for language extensions.

In scientific and engineering computing where
dimension checking has its most obvious application, it is
quite normal to find large bodies of complex legacy code
in use. Applying modifications as described in the
previous paragraphs is often not economically feasible.
The Osprey system developed by Jiang and Su [6] uses
type inference to carry out dimensional analysis of C
programs without the need for comprehensive code
modifications. Osprey uses a pipeline of tools for
constraint solving. It can use annotation of unit types in
the C code but it is not required. However, Osprey may
not discover any unit errors when there are not sufficient
annotations in the program.

Guo and McCamant [3] have developed a system for
C programs that infers the unit types of variables from
their use in the programs. It infers base units and identifies
a combination of these for each variable and constant in
the program. Their work does not require the user to make
any unit type annotations at all to the C code. The
resulting analysis can be used by programmers to identify
bugs indicated by the unit types not matching up with their

intuition. Their system also provides a framework for
systematically associating base units with real world units
and automating the process of identifying combinations of
these base units for all the program variables. There are
four stages in their system:

• constraint generation from an analysis of the
program source code

• constraint simplification by applying meaning-
preserving transformations and heuristics

• constraint solving using linear algebra
techniques outputting a minimal set of inferred
base units. Each variable is expressed in terms of
these inferred base units.

• user interface for guided annotations to allow
the user to provide user-defined units for
variables under the guidance of the solved
constraints.

Their method is limited by a static analysis that is

flow-insensitive. It only associates a variable with one unit
type whereas it is quite possible that the same variable
may be used for several different unit types over the
course of a program. In one example program, a single
global variable is used repeatedly when reading floating
point values of a number of different units causing them
all to be considered dimensionless. We explain below how
this problem can be overcome using our concept of
symbol lives. The analysis proposed by Guo and
McCamant is also context-insensitive. A function being
called at several different locations may on each occasion
be passed arguments whose unit types differ. The method
is only able to assign one set of units to the return value of
a function. The method avoids resulting inconsistencies by
treating all return values as dimensionless. Different unit
types fields within a data structure are not handled. All
fields are assumed to have the same unit type. The
elements of an array are treated as all having the same unit
type.

An important issue arising in the various methods
applied is the meaningfulness of the generated warning
and error messages. For example, in Petty's work, an error
is reported but no indication of where in the code that it
took place. This does not help the efficiency of debugging.
In work that solves constraint equations, the source of the
reported error can be very difficult to identify.

This paper describes a technique based on
dimensional inference that overcomes problems present in
the related work described above. In the next section we
shall indicate how dimensional inference can be used

4. Applying dimensional inference

We now consider the implications of applying

dimensional constraints to Fortran programs. Only real
variables, real constants and functions returning real
values are checked for consistency.

In the code fragment:
 R = B + C

where R, B and C are real variables which represent some
physical quantities in the program, the dimensions of R
must be the same as the dimensions of B and the
dimensions of C. Similarly, in the fragment:

 A = B * C
the dimensions of A must be the dimensions of B
multiplied by the dimensions of C.

Inferences like these are propagated through a
program. The analysis yields a set of dimensions which
describe the physical quantities used, and the relationships
between the dimensions are checked for consistency. If
the fragments above are followed by a fragment:

 E = A + C
then C is measured in the dimensions of C but A is
measured in the square of the dimensions of C. An error
has been detected.

5. Symbol lives

It is not always possible to attach a single inference of

dimensions to each variable. Consider the code fragment:
! Sort the tables by weight
change_f = .TRUE.
DO WHILE (change_f)
 DO i = 2, n
 IF (weight(i) < weight(i-1)) THEN
 temp = weight(i) ! (1)
 weight(i) = weight(i-1)
 weight(i-1) = temp
 temp = height(i) ! (2)
 height(i) = height(i-1)
 height(i-1) = temp
 change_f = .TRUE.
 ENDIF
 ENDDO
ENDDO

In this fragment, temp must first have the dimensions
of weight and then the dimensions of height. The
implication is that weight and height should have the same
dimensions. This problem is overcome by defining “lives”
of each variable.

A variable symbol life starts with an assignment (or,
in Fortran, with initialisation in a DATA specification) and
ends with another assignment or when the variable is no
longer in use. In the example above, temp has two
independent lives, started at (1) and (2) respectively. The
different lives can, and in this case do, have different
dimensions.

Note that every assignment does not necessarily start
a new life. In the fragment:
IF (loaded) THEN
 weight = vehicle_wt + payload ! (3)
ELSE
 weight = vehicle_wt ! (4)
ENDIF
acc = thrust / weight ! (5)
either of the values of weight assigned at (3) and (4) may
be used in the expression at (5). In cases like this, the

lives are combined and the dimensions of weight in the
two assignments must be the same.

This leads to an extra dimensional constraint in
addition to those listed in Section 2:

C8. If more than one assignment can start a life (for
example if they are embedded in if statements) then
their dimensions must be the same.

i.e. X = A; X = B ⇒ Units(A) = Units(B)

In general:
• Two lives are considered to be equivalent if any code

path exists where either could be used as an input to
the same expression.

• The meaning and results of a program would not
change if every separate life of each variable were
declared independently and given a different name.

In the analysis of dimensions, the separate lives of the

variables are identified and dimensions are associated with
the lives and not with the variables.

We give two definitions:
usage - the employment of a symbol on the right hand

side of an assignment or else as an input argument to a
sub-program call or as part of a condition (e.g. in an if
statement).

assignment - the employment of a symbol on the left
hand side of an assignment or as an output argument to a
sub-program call.

Each symbol is deemed to have one or more lives. A
life is started when the symbol is defined or assigned a
value. Subsequent stages of a life consist of uses made of
the symbol. Each stage is called a moment. A life is
terminated by the end of the program source code or by an
assignment being made to the symbol. For example, in the
following code fragments, the symbol X has three lives.

The first life of X begins with the declaration, the

second life begins with the assignment X = 1 and the
third life begins with the assignment X = 8. The first life
has one moment, the second has three moments and so
does the third.

During semantic analysis within WinFPT, lives are
determined for each symbol in turn for each usage
statement in turn by following this algorithm:

For each symbol in the symbol table

For each usage statement using the symbol
Trace back to all reachable last assignments
of the symbol previous to the usage

For the example above, for the X usage statement Y =

2 + X, the last previous assignment is X = 1. Thus the
life of X which includes Y = 2 + X consists of the three
statements:
X = 1
Z = 3*X
Y = 2+X

5.1 Cases

We now describe some particular cases:

1. Branches: If the path of control determines that two or
more assignment statements could have started a life that
includes a given usage statement then those assignment
statements must be considered to have started the same
life.
2. Structured data types: Combinations of symbols such as
A.X which identifies a field inside a structure or record are
treated like symbols.
3. Constants: Real constants are handled in the same way
as symbol lives and are also associated with dimensions.
4. Arrays: Arrays present two problems in the analysis of
units and dimensions. Firstly, it is sometimes difficult to
identify the separate lives of an array because some, but
not all elements of the array may be assigned in a code
fragment. Secondly, the units and dimensions of different
array elements may be different. A single array could
store, for example, the gender, age, weight and height of a
set of medical patients.

For these reasons, the initial implementation of
dimensional analysis has been restricted to scalar objects.
Algorithms have been designed to handle arrays but were
not implemented in the present work.

 INTEGER*4 X

X = 1

Z = 3*X

Y = 2+X

X = 8

P = X - 6

Q = 30 / X

First life of X

Second life of X
In the next section we examine the connection

between a variable's dimensions and its lives.

6. Symbol lives and dimensions

Third life of X During a life, the dimensions of a variable are fixed.
This rule applies even when a re-assignment may happen
during the course of the life dependent on a condition. e.g.
X = A
IF (P .LT. 5)
 X = B
ENDIF
PRINT *, X

This is a single life for X which starts with X = A.
The re-assignment which takes place only if the condition
is satisfied will be used in exactly the same way after the
ENDIF and so we must presume that the original

assignment and the re-assignment share the same
dimensions. Altering the second assignment of X as given
below results in a potential inconsistency since the final
line prints out either something with the dimension A or
the dimension A*A.
X = A
IF (P .LT. 5)
 X = A*A
ENDIF
PRINT *, X

If a variable has a more than one life then it indicates
that the programmer may be using the same variable for
multiple reasons. We cannot assume that the programmer
intends that in each life the variable has the same
dimensions. Consequently, our dimension checking will
only assume a variable has a particular dimension for the
course of a life and that its other lives can have different
dimensions. This has an important consequence for
checking assignment statements. Since an assignment
statement starts a new life for the variable on the left hand
side, we cannot declare that if the dimensions of the left
hand side variable left over from the previous life are
different from those on the right hand side then we have an
inconsistency. What we can in fact say is that the variable
on the left hand side is beginning a new life here with
dimensions given by those on the right hand side. For
example:
X = A*A ! Start of X life
B = 2*X
X = A*A*A ! Start of next X life
C = 3*X

In this code, X has two lives. In the first life, it has
dimensions given by A2 while in the second life it has
dimensions given by A3. Because of our understanding of
lives, we do not regard this situation as being inconsistent.

7. Dimension checking by inference in

WinFPT

During static analysis, WinFPT constructs an internal

representation of the user's source code. The
representation includes sequences of statements and their
component tokens such as symbol tokens and operator
tokens. The symbol lives are identified by using the
algorithm given in Section 5 to process the internal
representation, resulting in symbol tokens being replaced
by life tokens. In a later pass through the internal
representation, units are recorded for each life in a data
structure illustrated below in Figure 1.

Figure 1: Units data structure in WinFPT

As stated earlier, the name "units" is used in

preference to "dimension" to avoid confusion with the
properties of array variables. Figure 1 shows that, for each
unit found, WinFPT maintains:
• a list of usage records that identify every location in

the program where a symbol life has this unit
• a list of related unit records that identify every

location in the program where the unit has been found
to be identical to a combination of one or more
powers of other units through the application of the
constraints given in Section 2.
Thus we are able to record every kind of unit used,

where it was used and all the ways that it relates to other
units and the places in the user's code where this was
discovered. WinFPT implements the first six dimensional
constraints through a modification of its expression
analysis routines. It implements the seventh by carrying
out the units pass through the internal representation as a
bottom up walk through the user's program's call structure.
WinFPT knows at every call site the relationships between
the arguments and the return value because it has already
analysed the lower levels.

Dimensional checking consists of confirming the
consistency between the sets of related units and reporting
where inconsistency is found. We illustrate the process
with an example but first we introduce a notation to
describe the WinFPT units data structure.

We define
Units(X, n)^m

as units of life n of symbol X raised to the power m.
In the case of a symbol with only one life, this reduces to
Units(X)^m

The usage records in the data structure enable us to
find the locations in the user's code related to a particular
unit. We represent this as:
Units(X, n)^m->usages->Life nn of Y, location in code

We extend our notation to describe the related units of
a unit as follows. Suppose we have found that units of X
are the same as units of Ya.Zb and also Pc .

This will be expressed as:
Units(X) ->related-units-> Units(Y)^a . Units(Z)^b
 ->related-units-> Units(P)^c

We shall now describe the dimensional checking of
the following Fortran code fragment:

READ*, L, W, H ! Length, Width,

! Height of box
A = 2*(L*W + L*H + W*H) ! Surface area
V = L*W*H ! Volume
D = SQRT(L^2 + W^2 + H^2)! Diagonal
E = L + V ! An error situation

READ*, L, W, H

This statement starts the lives of L, W and H. Unit
records are created for them which we represent as
Units(L)
Units(W)
Units(H)

assuming, for the sake of simplicity of the notation,
that the symbols in the fragment only have one life.

A = 2*(L*W + L*H + W*H)

Processing the right hand side of this statement results
in:
Units(I1)-> related-units-> Units(L)^2
Units(I2)-> equivalent to-> Units(I1)
Units(I3)-> equivalent to-> Units(I1)
Units(L) -> related units -> Units(I1)^(1/2)
Units(W)-> equivalent to -> Units(H)
Units(H) -> equivalent to ->Units(L)

where I1, I2 and I3 are intermediate symbols
representing the quantities L*W, L*H, W*H respectively.
The data structures show the results of WinFPT's analysis
which has determined that I1 has the units of L2, that I2
and I3 have the same units as I1, that L has units which
are the square root of those of I1 and that the units of W
are the same as those of H and that the units of H are the
same as those of L.

The left hand side is A so we know that the units of
this life of A are those of the right hand side. WinFPT
records this life of A as being a usage of Units of I1. This
results in:
Units(I1)-> related-units -> Units(L)^2
 ->usage -> Life 1 of A, location in code
Units(I2)-> equivalent to -> Units(I1)
Units(I3)-> equivalent to -> Units(I1)
Units(L)-> related units -> Units(I1(1/2)
Units(W)-> equivalent to -> Units(H)
Units(H)-> equivalent to -> Units(L)

where changes from the previous data structure state
are shown in bold.

WinFPT has now identified a real symbol for I1 so
we replace I1 with that symbol:
Units(A)-> related-units -> Units(L)^2
 ->usage -> Life 1 of A, location in code
Units(I2)-> equivalent to -> Units(A)
Units(I3)-> equivalent to -> Units(A)
Units(L)-> related units -> Units(A)^(1/2)

Units(W)-> equivalent to -> Units(H)
Units(H)-> equivalent to -> Units(L)

WinFPT has completed the processing of the
statement. It has recorded that A has the units of the square
of L, and that L, W, H are equivalent to each other.

Comparing sets of units for equivalence is at the heart
of the process. WinFPT compares two sets of units
denoted f(Units) and g(Units) by solving the equation:

f(Units).g(Units)^(-1) = 1 Equation 1

Three outcomes are possible:
case 1) all factors cancel so we are left with 1 = 1.

This tells us that everything is consistent about the two
sets of units.

case 2) one factor remains on the left hand side. This
tells us that either the factor is dimensionless or we have
an error. If we have presumed that all real variables have
dimensions then we have found an error and so we report
the error and how it was caused.

case 3) two or more factors remain on the left hand
side. This gives us combinations of relationships that must
hold between the units for consistency.

For example, during the analysis of the statement that
assigns a value to A, WinFPT checks
Units(L)^1.Units(W)^1 against Units(L)^1.Units(H)^1.

Applying equation 1 we get:
Units(L)^1.Units(W)^1.(Units(L)^1.Units(H)^1)^(-1) = 1

This gives:
Units(L)^1.Units(W)^1.Units(L)^(-1).Units(H)^(-1) = 1

Cancelling factors, this reduces to:
Units(W)^1.Units(H)^(-1) = 1

This is an example of case 3. We can deduce that
Units(W) = Units(H)

V = L*W*H.

After processing this statement, the data structure
becomes:

Units(A) -> related-units-> Units(L)^2
 -> related-units-> Units(I4)^1 . Units(L)^(-1)
 ->usage -> Life 1 of A, location in code
Units(I2)-> equivalent to -> Units(A)
Units(I3)-> equivalent to -> Units(A)
Units(L) -> related units -> Units(A)^(1/2)
 -> related units-> Units(I4)^1 . Units(A)^(-1)
Units(W)-> equivalent to -> Units(H)
Units(H) -> equivalent to -> Units(L)
Units(I4)-> related units -> Units(A)^1 . Units(L)^1
where I4 is the intermediate symbol for L*W*H.

The assignment of V identifies the units of V to be the
same as the intermediate I4, and I4 is therefore renamed
in the table to show the association with a variable life:
Units(A) -> related-units-> Units(L)^2
 -> related-units-> Units(V)^1 . Units(L)^(-1)
 ->usage -> Life 1 of A, location in code
Units(I2)-> equivalent to -> Units(A)
Units(I3)-> equivalent to -> Units(A)
Units(L) -> related units -> Units(A)^(1/2)

 -> related units-> Units(V)^1 . Units(A)^(-1)
Units(W)-> equivalent to -> Units(H)
Units(H) -> equivalent to -> Units(L)
Units(V) -> related units -> Units(A)^1 . Units(L)^1
 ->usage -> Life 1 of V, location in code

D = SQRT(L^2 + W^2 + H^2)
After processing this statement, the data structure
becomes:
Units(A) -> related-units -> Units(L)^2
 -> related-units -> Units(V)^1 . Units(L)^(-1)
 ->usage -> Life 1 of A, location in code
Units(I2)-> equivalent to -> Units(A)
Units(I3)-> equivalent to -> Units(A)
Units(L) -> related units -> Units(A)^(1/2)
 -> related units -> Units(V)^1 . Units(A)^(-1)
 ->usage -> Life 1 of D, location in code
Units(W)-> equivalent to -> Units(H)
Units(H) -> equivalent to -> Units(L)
Units(V) -> related units -> Units(A)^1 . Units(L)^1
 ->usage -> Life 1 of V, location in code

E = L + V

The units of the right-hand-side are evaluated first.
The + operator implies that the units of L must be the
same as the units of V. Applying equation 1 to Units(L)
and Units(V) we get:
Units(L).(Units(V))^(-1) = 1

WinFPT checks through all the sets of units related to
Units(V) for consistency. Thus Units(V) is replaced by the
related units Units(A)^1 . Units(L)^1. The equation
becomes:
Units(L).(Units(A)^1 . Units(L)^1)^(-1) = 1

This reduces to:
Units(A)^ (-1) = 1

This is an example of case 2. Hence, either A is
dimensionless or else an error has been detected. This
statement is reported as an error.

8. WinFPT Dimensional analysis output

We give below the output produced by WinFPT when

carrying out dimensional analysis on the code fragment.
(Note that the alternative Fortran notation of ** for raised
to the power is employed by WinFPT.)

Line 28
File: e:\projects\fpt\fpttest\box.f90
 E=L+V
 ^
 Inconsistency detected in units
 and dimensions

Units Identified
================
Units(L)

 == Units(V) ** 1
 * Units(A) ** -1

 == Units(A) ** (1/2)
 Variables or variable lives
 D H L W

Units(A)
 == Units(V) ** 1
 * Units(L) ** -1

 == Units(L) ** 2
 Variables or variable lives
 A

Units(V)
 == Units(A) ** 1
 * Units(L) ** 1
 Variables or variable lives
 V

Units(E)
 Variables or variable lives
 E

Units of Symbols
================
A Units(A)
D Units(L)
E Units(E)
H Units(L)
L Units(L)
V Units(V)
W Units(L)

WinFPT has identified the error in the assignment E

= L + V. Through the system of recording unit usage
locations, WinFPT is able to report the source code line
and the operator within the line that gives rise to the error.

In addition to reporting errors, WinFPT lists the non-
equivalent units that appear in the program in the final lists
of related units. These are the de facto fundamental units
used by the programmer. Their relationships with each
other are listed systematically. The user is able to scan
these lists to confirm that WinFPT is telling the user that
the units are related in the expected way. Meaningful
symbol names make a considerable difference to the ease
with which this can be carried out!

WinFPT then lists the symbols giving the units of
each in terms of the de facto fundamental units.

As mentioned earlier, there are situations in which the
method can detect erroneous use of units in the sense of
trying to mix feet and metres. Consider the following code
fragment:

FTPM = 3.2808 ! feet per metre
:

R_OUTER = 4.1 ! feet
R_INNER = 1.2 ! metres
L = R_OUTER - R_INNER*FTPM
A = PI*(R_OUTER**2 - R_INNER**2)

The programmer has created a conversion factor

variable but he has forgotten to apply it in the formula
calculating A. WinFPT would report an error since the
assignment to L would result in
Units(R_OUTER)->equivalent to->

Units(R_INNER)*Units(FTPM)
whereas the assignment to A would result in
Units(R_OUTER)->equivalent to->Units(R_INNER)
and WinFPT would see this.

9. Remarks

Previous methods aimed at checking dimensional

consistency of computer programs have been described
and issues arising from them have been discussed. A novel
approach based on the concept of symbol lives has been
introduced. This approach, allied with the internal
representation of a user's Fortran program, enables
WinFPT to carry out fast and systematic checking without
the user having to modify source code.

It will be noted that WinFPT carries out a great deal
of checking of the unit records as it works its way through
the user's code. This is achieved very efficiently and
comprehensively by maintaining a set of cross reference
tables that enable unit usages etc to be located rapidly
within the user's source code. Timing experiments on large
bodies of source code indicate that WinFPT can analyse
many thousands of lines of code per second.

WinFPT has been used to analyse a number of large
Fortran programs. In one large helicopter simulation it
reported 90 dimensional errors.

Work is in progress of extending the facility to arrays
and sub-programs.

10. References

[1] R.F. Cmelik, N.H. Gehani, "Dimensional Analysis with
C++". IEEE Software, May 1988, pp 21-27.

[2] A. Dreiheller, M. Moerschbacher, and B. Mohr, "Physcal -
programming Pascal with physical units." Sigplan Notices 21, 12
(December 1986), pp 114-123.

[3] P. Guo, and S. McCamant, "Annotation-less Unit Type
Inference for C" MIT 6.883 - Program Analysis, Fall 2005.

[4] P.N. Hilfinger "An Ada Package for Dimensional Analysis",
ACM Transactions on Programming Languages and Systems Vol
10, No. 2 April 1988.pp 189-203.

[5] R.T. House, "A proposal for an extended form of type
checking of expressions." Computer Journal 26, 4 (Nov 1983),
pp 366-374.

[6] L. Jiang, Z. Su, "Osprey:a practical type system for
validating dimensional unit correctness of C programs."
Proceedings of the 28th International Conference on Software
Engineering Shanghai, China, 2006.

[7] A. Kennedy, "Dimension Types", ESOP, 1994, pp 348-362

[8] National Institute of Standards and Technology web page:
http://physics.nist.gov/cuu/Units/ February 2007

[9] G. W. Petty, "Automated computation and consistency
checking of physical dimensions and units in scientific
programs." Software Practice & Experience 2000; 00:1-7.

[10] M. Sandberg, D. Persson, B. Lisper, "Automatic
Dimensional Consistency Checking for Simulation
Specifications", SIMS 2003, Västerås, Editor(s):Erik Dahlqvist,
September, 2003, p 6,

[11] Z. D Umrigar. "Fully static dimensional analysis with
C++". Sigplan Notices 29, 9 (September 1994), pp 135-139.

[12] A. Van Delft, "A Java extension with support for
dimensions", Software Practice & Experience 29, 7 (June 1999),
pp 605-616.

[13] M. Wand, P. O'Keefe, "Automatic dimensional inference"
Computational Logic - Essays in Honor of Alan Robinson, 1991
pp 479-483

[14] WinFPT home web page 2007: http://www.simcon.uk.com

	1. Background
	2. Dimensional Constraints
	3. Related work
	4. Applying dimensional inference
	5. Symbol lives
	6. Symbol lives and dimensions
	7. Dimension checking by inference in WinFPT
	8. WinFPT Dimensional analysis output
	9. Remarks
	10. References

