
QA Analysis of the WRF Program
John Collins1,2,4,* Mark Anderson1 Brian Farrimond1,4 David Gill3

 1. Edge Hill University UK, 2. University of Cape Town, 3. NCAR, 4. SimCon Ltd. UK, * john.collins@simconglobal.com

Are there coding errors in WRF?
Are there Coding Errors in WRF?

All large programs contain errors. WRF is no exception.

Errors are of three types:

● Modeling Errors

● Coding Errors

● Compiler Errors

We have analyzed WRF as a computer program, not as a
climatological model. The analysis exposes coding errors and
compiler errors.

In WRF version 3.4, there are, for example:

2352 Inconsistent sub-program arguments

 142 Errors in INTENT (IN) Declarations

 62 Confirmed errors in INTENT (OUT) Declarations

 552 Sections of unreachable code

4722 Mixed precision arithmetic statements

 322 Uninitialized variables

 8 Failed overloaded assignments

Why Must We Revise the Build Procedure?

WRF source code is not distributed as directly compilable code.
It is pre-processed before compilation by custom-written
programs and by the C pre-processor, cpp, to adapt to the
specific compiler and multi-processor configuration. The analysis
tools cannot analyze the pre-processor code.

The intention is to encapsulate the statements which are pre-
processed in Fortran INCLUDE files, leaving a core of pure
Fortran code which is not pre-processed and which may be re-
engineered automatically.

An Apology

Acknowledgments

A potentially serious error in WRF is the declaration of a sub-
program argument to be INTENT (IN) when the argument is
actually modified within the routine. For example:
File: share/module_io_domain.f90
SUBROUTINE input_boundary(fid,grid,config_flags,ierr)
 IMPLICIT NONE
 TYPE (domain) :: grid
 TYPE (grid_config_rec_type),INTENT(IN) :: config_flags
!--^----
!!! FPT - 2491 INTENT declared IN but argument is written to:
!---
 INTEGER,INTENT(IN) :: fid
 INTEGER,INTENT(INOUT) :: ierr
 IF (config_flags%io_form_boundary .GT. 0) THEN
 CALL input_wrf(fid,grid,config_flags, &
 boundary_only,ierr)
 ENDIF
 RETURN
END SUBROUTINE input_boundary

The variable config_flags is then modified in input_wrf:

File: share/input_wrf.f90
SUBROUTINE input_wrf(fid,grid,config_flags,switch,ierr)

 :
 TYPE (grid_config_rec_type),INTENT(INOUT) :: config_flags

 :
 IF (IERR .NE. 0) THEN
 IF (MMINLU=='UMD') THEN
 config_flags%iswater = 14
 ELSE
 config_flags%iswater = 16
 ENDIF
 ENDIF

The problem is that the compiler may use the INTENT statement
to optimize the code, and may do so incorrectly.

Many of the errors and anomalies detected in WRF have no
effect on the program performance. Over half of the inconsistent
sub-program arguments are a consequence of re-mapping of
array shapes across the call-site. Others are data type
inconsistencies in routines which simple move data and do not
use the data types for arithmetic processing. Many of the
INTENT (IN) errors are a consequence of incorrect INTENT
(INOUT) declarations elsewhere in the code, and many
unreachable code sections are a deliberate consequence of pre-
processing for parallel execution

Some error reports from our tools are incorrect. The analysis
tools are not yet fully compliant with Fortran 2003, and some of
the language features used in WRF (e.g. FLUSH statements and
tagged IF-THEN-ELSE constructs) generate spurious errors.
Work is in train to update the tools.

The most important systematic issue in the code is probably loss
of precision due to mixed precision arithmetic, and this may be
corrected by compiler options to force double precision
throughout the program.

Many Apparent Errors in WRF are Spurious or Harmless

Errors in WRF - What are Intent Errors?

This work is supported by:

The United States Air Force

UCAR and NCAR

Edge Hill University

The UK Higher Education Innovation Fund (HEIF) at
Liverpool Hope University

SimCon Ltd.

The authors wish to thank:

Prof. W. J Gutowski Jr. Iowa State University

Prof. Bruce Hewitson, University of Cape Town

for their help and support.

Is This Unusual?

The UK MOD asked us to create a simple metric of code quality.
The metric we use is the millibug – the number of anomalies per
1000 lines of code, where errors are weighted as 10 times more
significant than warnings.

WRF 3.4 has a score of about 20 anomalies per 1000 lines. The
typical aerospace programs we work on have about 10.

WRF is about half as good as the code which designed the
aircraft which got us here.

Does This Matter?

Possibly.

WRF is very well designed, well tested and well exercised. Most
of the results are probably a good representation of the modeling
carried out. However there will be occasions where the errors
have significant effects.

We are developing tools to analyze the effects of the errors which
have been identified, and these tools will be made available to
the WRF community.

But the errors may not be as serious as they first appear.

What Can Be Done?

We can correct the code.

All corrections to the code must be tested. Regression tests and
tools for test result analysis are under development.

Some errors can be corrected simply by hand. The eight failed
overloaded assignment operations, for example, are corrected by
a one-line change in the code.

Correction of most of the errors must be automated. It is not
practicable, for example, to correct 4722 mixed arithmetic
expressions manually without injecting more (and worse) errors.
Our Computer Aided Software Engineering (CASE) tools can
carry out many of the changes automatically. Before this can be
done, we must revise the WRF build procedure.

This poster describes errors and inconsistencies in the WRF
Fortran code. It is important to stress that the authors view WRF
as an outstanding engineering achievement and have great
respect for the program developers.

We come to contribute to WRF, not to criticize it.

Errors in WRF – Mixed Precision

File: phys/module_gfs_funcphys.f90
 REAL(krealfp),PARAMETER :: &
 clcl1 = 0.954442E+0, clcl2 = 0.967772E-3, &
 !--------^--------------------^----------------------------------
 !!! FPT - 3295 Parameter will not have the expected precision
 !!! FPT - 3295 Parameter will not have the expected precision
 !--
 clcl3 = -0.710321E-3,clcl4 = -0.270742E-5
 !--------^--------------------^----------------------------------
 !!! FPT - 3295 Parameter will not have the expected precision
 !!! FPT - 3295 Parameter will not have the expected precision
 !--

Mixed precision arithmetic may result in an unexpected loss of
precision. In the PARAMETER statement below, for example,
the parameters clcl1, clcl2, clcl3 and clcl4 are
declared to be 8-byte reals, and the values assigned to them are
written with 6 digits after the decimal point. However, the
numbers are written without a data kind tag and the exponent
character is E, not D. They are therefore single precision values.
The parameters have only single precision wherever they are
used.

295 parameters in WRF are affected in this way.

There are about 3,000 similar cases where single and double
precision numbers are mixed within the same expression. Not all
are errors, but a majority almost certainly are.

Clutter

A difficulty in analyzing WRF is the large number of harmless
inconsistencies in the code. These do not cause errors, but real
errors are hidden amongst them. For example, there are 580
inconsistencies in array bounds in subroutine arguments, such as
that shown below.

Line: 2508, File: phys/module_mp_wdm6.f90
CALL slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1 &
 ,km)
Argument 1 Formal argument Actual argument
---------- --------------- ---------------
Argument qrs qr2
Protocol By reference By reference
Usage Symbol Symbol
Access Read Read/Write
Data type REAL REAL
Data size *4 df *4 df
Dimensions (*,*) (*) ***

The array qr2 has been re-mapped across the call-site from one
dimension to two. This almost certainly works as intended, but is
trapped as a potential error and all occurrences must be checked
by hand. We hope to correct issues such as this.

Can You Help?

If you are aware of specific errors in WRF, or of conditions which
cause exceptions or invalid results, please tell us. We may know
possible causes or we may be able to refine our analyses to find
them.

mailto:john.collins@simconglobal.com

	Slide 1

